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Abstract
Many high performance applications run well below the peak arithmetic performance of
the underlying machine, with inefficiencies often attributed to a lack of memory bandwidth.
In this work we examine two emerging media processors designed to atidressi
known gap between processor and memory performance, in the context of scientific
computing. The VIRAM architecture uses novel PIM technology to combine embedded
DRAM with a vector cgrocessor for exploiting its large bandwidth potential. Thegma
architecture, on the other hand, provides a streamare memory hierarchy to support the
tremendous processing potential of the SIMD controlled VLIW clusters. First we develop a
scalable synthetic probe that allows us to parametize key performaribatas of VIRAM
and Imagine while capturing the performance crossover point of these architectures. Next
we present results for two important scientific kernels each with a unique set of
computational characteristics and memory access patterns. Ourimegoes isolate the set
of application characteristics best suited for each architecture and show a promising
direction towards interfacing leadirgdge media processor technology with hegia
scientific computations.

1 Introduction

Traditionally, HPC ¢chnologies have been based on custom hardware designed
specifically for that market. However, recent market forces have caused most modern
supercomputing systems to rely on commodity based components. Sinemedidi
applications are becoming the dormhaonsumer of computing cycles [17], there is a
correspondingly large effort to improve chip technology and ultimately create commodity
components designed to efficiently process fagt media applications. Therefore it is
important for the higlend sciatific community to leverage the efforts of media processor
development and investigate the overlap between the architectural requirements of both
domains. From an applications perspective, both scientific and media processing fields
share many of the saneemputational algorithms and can contain a high volume of data
parallelism: examples include linear algebra kernels as well as spectral transformations. In
this work we examine two novel geneplrpose media processors, each representing
significantly dfferent balances of architectural characteristics, in the context of scientific
computing kernels.

Historically, embedded multimedia and signal processing chips have been
manufactured as custedesigned ASICs; however, this is becoming impractical foryman
application fields due to the high cost and the relatively slow design cycle of custom
fabrication. General purpose processors, on the other hand, remain unsuitable despite ever
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increasing clock speeds and multimedia specific enhancements (such asvimM|[23]
extensions), due to their relatively poor performance and high power consumption. Media
applications, unlike many classes of programs, exhibit poor temporal locality and receive
little benefit from automatically managed caches of conventiorabanichitectures. In
addition, a significant fraction of media codes are characterized by predictabiesined
dataparallelism that could be exploited at compile time with properly structured program
semantics. However, most superscalar gerprgicse processors are poor at dynamically
exploiting this kind of parallelism, and are too expensive in terms of power consumption.
Finally, many media programs require a bandwmaliented memory system; unlike
conventional cachbased memory hierarchies tlae entirely organized around reducing
average latency time, and generally lack the raw bandwidth required for these applications.
This paper presents two emerging media microprocessors, VIRAM and Imagine, and
evaluates their potential efficacy for addieg the growing memorgap of highend
numerical simulations.

First we develop a scalable synthetic probe c@lgehatthat allows us to
parametize key performance attributes of VIRAM and Imagiaeatwas specifically
designed to reveal architecturabccteristics of the two media processors in this study.
By varyingSgmat’'scomputational requirements, we explore the main architectural
features of VIRAM and Imagine, and observe the crossover point where one technology
becomes more suitable to the oth&ie then present two important scientific kernels, each
requiring a different balance of microarchitectural resource to achieve high performance.
The SPMV benchmark performs sparse matviector multiplication, and is characterized
by irregular data accesnd low computation per memory access. In contrast, our second
scientific kerneQRD, performs the Householder QR factorization of complex matrices,
and has a relatively high computational intensity for each data access. The purpose of this
work is not b compare VIRAM and Imagine from a traditional benchmarking perspective.
Instead, we use our scientific kernel codes to explore the salient features of these unique
architectures, and define the program characteristics best suited for each of thedg radical
different emerging technologies.

2 Architecture, Programming Paradigm, and Kernel Overview

In this section we provide a brief overview of the two media processors examined in this
study, a summary of their programming paradigms and a descriptiba scientific
kernels used in our experiments.

21VIRAM The VIRAM processor [2] is a research architecture being developed at UC
Berkeley. A floor plan of the VIRAML prototype chip is presentedHigure 1 Its most

novel feature is that is completesggm on a chip, combining processing elements and 13
MB of standard DRAM into a single design. The processanemory (PIM) technology
allows the main RAM to be in close proximity to the processing elements, providing lower
memory latency and a significdywider memory interface than conventional
microprocessors. The resulting memory bandwidth is an impressive 6.4 GB/s. VIRAM
contains a conventional general purpose MIPS scalar processbipomut to exploit its

large bandwidth potential, it also hasextor ceprocessor consisting of 4 @t vector



lanes. VIRAM has a peak performance of 1.6 GFlop/s for 32 bit data and is a low power
chip, designed to consume only 2 Watts of energy.

The hardware resources devoted to functional units and registetsersapdivided
to operate on 8, 16, 32, or-6it data. When the data width (known as the virtual processor
width) is cut in half, the number of elements per register doubles, as does the peak
arithmetic rate. The variable data widths in VIRAM are commarthier SIMD media
extensions such as Intel’'s SSE, but otherwise the architecture more closely matches vector
supercomputers. In particular, the parallelism expressed in SIMD extensions are tied to the
degree of parallelism in the hardware, whereas afigaint instruction in VIRAM
specifies 64way parallelism while the hardware only executesa®. The advantages of
specifying longer vectors include lower instruction bandwidth requirement, a higher degree
of parallelism for memory latency masking, ahd tbility to change hardware resources
across chip generations without requiring software changes.

2.2 Imagine A different approach for addressing the processemory gap is through

stream processing. Imagine [12] is a programmable streaming micespoocurrently

being developed at Stanford University. Stream processors are designed for
computationally intensive applications characterized by high data parallelism and producer
consumer locality with little global data reuse. The general layoutasiragf Imagine is
presented ifrigure 2 Imagine contains 48 arithmetic units, and a unique three level

memory hierarchy designed to keep the functional units saturated during stream processing.
The architecture is centered around a 128 KB stream regist€8RF), which reads data

from off-chip DRAM through a memory system interface and sequentially feeds the 8
arithmetic clusters. The local storage of the SRF can effectively reuse intermediate results
(producerconsumer locality), allowing for the amadition of offchip memory accesses.

In addition, the SRF can be used to overlap computations with memory traffic, by
simultaneously reading from mamemory while writing to the arithmetic clusters
(doublebuffering). The Imagine architecture emphasiz@spgeocessing power much more
heavily then VIRAM with a peak performance of 20 GFlop/s for 32 bit data.

Each of Imagine’s 8 arithmetic clusters consists of 6 functional units containing 3
adders, 2 multipliers, and a divide/square root. Imagine is a r&&ibi¢ architecture; with
support for performing operations on-Ehd 8bit data resulting in two and four times the
peak performance respectively. This is analogous to VIRAM’s virtual processor widths;
however, unlike VIRAM there is no support for 64 tyterations. Thus we restrict our
study to 32bit data elements. A key difference between the two architectures is in the way
instructions are issued. In Imagine, a single microcontroller broadcasts VLIW instructions
in SIMD fashion to all of the arithmeticlusters. In contrast, VIRAM uses a more
traditional single instruction per cycle issue, counting on parallelism within each vector
instruction to achieve high performance.

Table 1summarizes the high level differences between the VIRAM and Imagine
ardhitectures. Notice that Imagine has an order of magnitude higher peak performance,
while VIRAM has twice the memory bandwidth and consumes half the power. Also
observe that VIRAM has enough bandwidth to sustain one operation per memory access,
while Imaghne requires 30 operations to amortize one word efluff memory, and 2.5
operations for SRF references. In order to gain deeper insight into the two architectures, we
constructed a scalable synthetic probe calgohat Using this simple benchmark, with



abundant finggrained data parallelism and no data dependencies, allows us to examine a
spectrum of computational requirements while correlating performance to the underlying
architectural features. Details are presentegkmiion 3

2.3 Programming Paradigm and Softwar e Environment

The vector programming paradigm [20] of VIRAM is well understood and can leverage off
of years of algorithmic research as well as sophisticated compiler technologies. Logically, a
vector instruction specifies the parall@evations to be performed on all elements of the
vector register. However, at the hardware level each vector instruction splits into multiple
element groups that then perform the operations. For example, when operatingiton 32

data in VIRAM, the logicaVector length refers to 64 elements while the physical
configuration contains only 8 lanes. Therefore each vector instruction results in the
execution of 64/8=8 element groups, where each group uses the actual vector hardware to
process 8 elements at a @m

Imagine supports the relatively new stream programming paradigm, designed to
express the high degree of figeained parallelism necessary to effectively utilize the large
number of functional units. The stream programming model organizes data as stneiam
expresses all computations as kernels [Adtream is an ordered set of records of
arbitrary (but homogeneous) dathjects. For example, in a finildement scientific
simulation the computational stream could contain a set of records, whereaach
element represents various physical components of the experiment (such as pressure,
velocity, position, etc.) Vectors, on the other hand, are restricted to operating on basic data
types, and must decompose complex records into vectors of sepamatats. Kernels
perform computation on entire streams, by applying potentially complex functions to each
stream record in order. However, kernels cannot make arbitrary memory reference and are
limited to only accessing data from the SRF in a sequengiaidia. The kernel memory
reference restrictions allow the memory subsystem to effectively provide data to the large
number of functional units. However, these memory access limitations increase
programming complexity, especially for irregularly structuapglications.

Both the vector and stream programming paradigms provide methods for
expressing the fingrained data parallelism of an application. Providing for explicit
parallelism in the ISA, allows the underlying hardware to directly support vectors or
streams, in an energgfficient manner. The application performance, however, is highly
correlated to the fraction of the application amenable to data parallelism. A key distinction
between the two models is that the Imagine architecture supports strferais-word
records directly in the ISA, as opposed to VIRAM whose ISA support is limited to vectors
of basic dataypes. Going back to our finkelement example, Imagine is able to access the
multi-word data records of the simulation in a tstiide Bishion from main memory.
Appropriate reordering is then performed in thecbip memory subsystem, before passing
the correctly structured data to the SRF. However, in vector architectures, strided accesses
are required to load each basic data type ofittterlying physical component causing
potential memory overheads, detailecsattion 3.2.1This permits Imagine to access-off
chip main memory in a more efficient manner. Additionally, organizing streams as multi
word records also increases kernel ldgakllowing for efficient VLIW processing by each



of the functional units. Other advantages of mawlbrd parallelism include the potential of
reduced programming complexity and low instruction bandwidth.

We end this section with a brief description of #oftware environment. In
VIRAM, applications are coded in C using the vcc [16] vectorizing compiler. However, it
is occasionally necessary to hand tune assembly instructions to overcome the deficiencies
of the compiler environment. In Imagine, two laages are used to express a program: the
StreamC language is used to coordinate the streaming of data while KernelC is used to
define the computational kernels to be performed on each stream record. Separate stream
and kernel compilers then map these twmglaages to the ISA of the stream controller and
micro-controller respectively. The Imagine software environment allows for automatic
code optimizations such as leaprolling and software pipelining, as well as visual tools
for isolating performance bottiecks. The results reported in this paper were gathered from
the VIRAM and Imagine cyclaccurate simulators.

2.4 Scientific Kernels The first scientific kernel we examine is sparse matrix vector
multiply SPMV. This is one of the most heavily used aitjons in largescale numerical
simulations, and is a critical component in data mining, as well as signal and image
processing applications. For example when solving large sparse linear systems or
eigensystems, the running time is generally dominatetlddyRMV kernel. The
performance of sparse matrix operations tends to perform poorly on modern
microprocessors due to the low ratio between arithmetic computation and memory
accesses. Additionally, the irregular data access of this algorithm is inhetetttysavith
cachebased architectures. It is therefore important to evaluate the performance of VIRAM
and Imagine in the context 8PMV.

Our second scientific kernel is the QR decomposition of a complex fle@dimd
matrix (QRD). QRD s a weltknown linear algebra algorithm commonly used in scientific
computing and signal processing applications. It is also a key component of a larger space
time adaptive processing application (STAP), which is used to cancel clutter and
interference in airborne radar ages [5]. Unlikehe SPMV kernel,QRD is a dense matrix
method with a high operation count for each word of data access. We therefore evaluate
the performance behavior of VIRAM and Imagine for two scientific kernels, each with
vastly different computatial requirements and data access patterns.

3 Insightsinto the Architectures

In order to gain insight into the architectural differences between VIRAM and Imagine, we
constructed a scalable synthetic probe caligohat This specially designed

microbenchrark has several tunable parameters used to isolate key characteristics of both
systems, and capture the performance crossover point of these radically different
technologies.

3.1 Sgmat Overview The computational task &gmatis to square a set bfmarices of
sizeNxN repeatedIyM times By varyingN andM, we can control the size of the

computation kernel, as well as the number of arithmetic operations per memory access. In
addition, by varying the number of matricé$ {ve can correlate the vectdrisam length

with performance.



The squaring of eadixN matrix requires\® multiplications and\?(N-1)
additions, while requiringl® memory accesses (loading and storing 32 bit words). On
VIRAM the minimum number of cycles (algorithmic peak) required to perfdrrepeated
squarings of. matrices id-M-(2N°- N%)/8, since each of the 8 vector lanas perform one
32-bit flop per cycle. Additionally, the total number of operations per word of memory
accessed in VIRAM it (2N3-N?)/2N?*=M-(2N-1)/2. However, the analysis is somewhat
different for Imagine since it contains multiple functional units pester and operates in
VLIW fashion. To calculate Imagine’s algorithmic peak performance, we can effectively
ignore the cost of addition operations because Imagine can perform 3 adds and 2 multiplies
per cycle, while th&gmatbenchmark requires fewer atidns than multiplications. As a
result Imagine’s peak performance &gmatrequires only.-M-N%16 cycles, since each of
the 8 clusters can perform 2 multiplies per cycle. Additionally, the ratio between the
number of multiplies performed per memory acce$s-I*’2N? = N-M/2. Thus for the
Sgmatexample, Imagine is required to sustain aboutdéwihe memory bandwidth of
VIRAM to keep its functional units optimally saturated. Finally, note that due to limitations
imposed by the number of VIRAM vector registers, N could be no larger then 3 for the
repeated squaring (M>1) experiments.

3.2 Sgmat Performance We start by setting th@gmatprobe to the low end of the
performance spectrum and work our way up to high efficiency, at each point highlighting
the relevant architectural features. Our goal is noSggeatfor benchmarking these
systems, butather as a tool for gaining insight into their key architectural features.

3.2.1 Low Operations per Memory Access In our first experiment, we examine 5
matrices N=1..5), with a single matrix squariniyl€1) and short vector/stream length
(L=16). Limiting this example to only a single squaring of the matrices causes relatively
few operations per word of data access and results in high stress on the memory system. In
addition, the short vector/stream lengths deleteriously affect the performance of both
architecturesTable 2shows the percentage of theoretical peak achieved on VIRAM and
Imagine. Notice that both architectures show poor performance fa¥,lashieving only
4.0% and 0.1% respectively. Aksincreases, so does the ratio of computation to mgmo
access; thus improving performance. HoweverNfeb Imagine’s performance is still very
poor achieving only 2.9% of peak. VIRAM, on the other hand, sustains 36.9%, a
surprisingly large fraction of its peak performance considering the low volume afecqu
computations and short vector length.

Figure 3compares performance between VIRAM and Imagin®&\f8 of a single
matrix squaring1=1), but here we examine the effects of increasing the vector/stream
length varyind. from 8 to 1024. Imagine’s streamodel requires large number of
arithmetic operations per memory access to effectively use the underlying hardware.
Therefore this benchmark example is not well suited for the Imagine architecture. The
computational rate is too low to amortize-offip menory bandwidth, and the SRF is not
being used effectively since there is no prockomersumer locality in this example.
Another requirement for good streaming performance is that the stream must be long
enough to hide memory latendyigure 3shows that ak is increased from 8 to 1024, peak
performance gradually improves, but plateaus at only 7% of peak performahzefdfor
each kernel called, there are a number of overheads, including: sending the instructions



from the host to the microcontroller, gchuling the SRF, and filling/draining the software
pipeline. Thus performance is expected to improve with ldrgémce these costs are
amortized. Additionally, increasing the stream size helps amortize expensorepff
memory latency.

For VIRAM, on the other hand, performance starts low but quickly grows htth
a reasonable fraction &gmat’stheoretical peak performance, achieving almost 40% when
L>256. The vector pipelines effectively hide memory access overheads by overlapping
loads with arithmetic operations. In addition, theabip DRAM allows for high
bandwidth and low latency memory access. These examples demonstrate that the
architectural biance of VIRAM is better suited for this difficult class of problems,
characterized by low computational requirements and relatively short vector lengths.

A critical issue in determining performance on VIRAM, however, is the memory
access patternsable 3shows performance foi=1, M=1 andL=256 for various strides,
both with and without address generation. Best performance is achieved when using unit
stride and no address generation as seen in column two. The third column demonstrates the
effects of usinghe same unistride memory access pattern, but with address generation
turned on in the assembly instructions: resulting in a 46% degradatggnait's
performance. This is because VIRAM can only generate 4 addresses per cycle, independent
of the data wdth. Although for 64bit values there is sufficient address generation to load
or store a value every cycle, but when working with the-8iBRanes, the arithmetic units
can more easily be starved for data. On the fourth and fifth columns performance
significantly degrades due to both ronit stride memory access patterns and the necessity
of memory address generation. As we increase the memory stride, the DRAM bank
structure can become apparent as multiple accesses to the same bank requires additional
latency to charge the DRAM. The frequency of the bamkflicts depends on the memory
access pattern as well as number of banks and subbanks in the memory system. Stride
effects are not as pronounced in Imagine, however, due to iti@mstreaming memgr
system, which allows muklivord records to be read in unit stride from raaemory and
uses reorder buffers to properly arrange the data into the SRF, as discig&smidnr?.3.

3.2.2 High Operations per Memory Access Table 4presents performance v#ts when

the matrix is repeatedly squaréd<1,10,20), using the 3x3 matrix and a relatively large
vector/stream length of 1024. As expected, both architectures achieve higher percentage of
peak asM increases since there is more required computaticeafdr word of data access.
VIRAM achieves close to peak performance at 82% and 89%i$40,20 respectively, an
increase of more than a factor of 2 from kel experiment. Imagine’s performance also
improves to 38%N=10) and 49%N1=20) efficiency, a 7x impprovement from the single
squaring M=1) experiment.

One reason for the impressive improvement in Imagine’s performance is that the
computational kernel is now significantly bigger. For sralthe number of arithmetic
operations per kernel call is smalhd the fixed overheads of each kernel call can dominate
performance. These overheads include reading and writing from the SRF to the clusters,
and filling/draining the kernel pipeline. For example, for the 3x3 matrix Mith, the
kernel's ideal executn time is 14 cycles, however each actual kernel execution requires
34 cycles, meaning that only 41% of the operations are going towards matrix



multiplication. However, when the kernel size is increaséd-to andM=10, the efficiency
of each kernel calises to 91%.

Although Imagine’s performance has significantly improved fronké
experiment irSection 3.2.1it still achieves less then 50% efficiency for the large stream
size (=1024). This is somewhat surprising since the ratio between multiphsadind
memory access is now 30, which should be enough operations to fully saturate the
computational units and amortize -afiip memory references. These results demonstrate
that for the Imagine stream architecture a very large number of ops per woedured to
fully utilize the underlying hardware. However, Imagine’s 50% efficiencygmat
translates to 8GFlop/s of performance, showing there are sufficient computational
requirements in this parameter set to effectively utilize thedsegke procssing power of
the Imagine architecture.

A key aspect of the streaming paradigm is the concept of predansumer
locality, where data is circulated between the SRF and arithmetic clusters, thereby avoiding
expensive ofichip memory access. We explahes architectural feature by using two
different approaches to perfol@gmat’'srepeated matrix squarings, while keeping the
number of operations fixed (constén}. The first method of achieving a givihis to
make the kernel more computationally inteesias is performed in VIRAM. Imagine,
however, allows a second approach where prodtmesumer locality is utilized by using a
less computationally intensive kernel and repeatedly passing the partial matrix product
through the SRF until the calculatichdomplete. We therefore defikeas the number of
times the matrix is squared in the kernel, 8 the number of times that kernel is
repeatedly called, wheM=K-S. By varyingK andS, we can explore the effect of
producerconsumer locality on keeh performance.

Figure 4shows the percentage of peak performance for various combinatikns of
andSon Imagine. Stream length)(here is set to very large optimal values to avoid any
shortstream effecfs Notice that in order for the produessnsumetocality to work
effectively, the kernel computations must be high enough to amortize the fixed kernel
overheads. This can be seen by fromkhké data set where performance is significantly
belowK=5,10 even though the total number of matrix squaringthareame. However, we
see littler difference in the percentage of peak performance Kvegoals 5 and 10,
showing that producesonsumer locality can be effectively used when the computational
kernels are reasonably large. Finally, observe that eveghhguto 600 multiplications
are performed for each word of data access, the percentage of theoretical peak plateaus at
only 70%. This phenomenon is due to the SRF bandwidth effects, as well as fixed kernel
overheads; demonstrating that produoemsumer eamputational intensity is not sufficient
to fully saturate the arithmetic clusters, if the underlying kernels do not perform very large
numbers of operations.

3.2.3 Peak Performance and Crossover Table5 present8/IRAM and Imagine

performance osgmat under ideal conditions. By runnir@gmatusing high

computational requirements together with optimal vector/stream lengths, we can effectively
mitigate memory access penalties and achieve over 90% of theoreticalepamance

4 Stream length ranges from 4320 to 18160 depending on the optiipaizat as predicted by the software
development environment.



on both architectures. Notice that for the Imagine case the matrix size had to be increase to
N=5 to overcome fixed kernel overheads.

Finally, Figure 5presents the performance crossover point where Imagine
outperforms VIRAM in terms of cyce(L>256) and MFlop/sL(>64). Here the raw
processing power advantages of Imagine become apparent, achieving almost a 4x
performance increase over VIRAM in terms of MFlop/slfe024. Codes characterized
by this balance of computational intensity and memegquirements would greatly benefit
from Imagine’s streaming architecture.

4 Sparse Matrix Vector Multiplication

For theSPMV kernel we examined 3 different implementation strategies for Imagine and
VIRAM, each of which highlights different aspects of ttnderlying architecture. We

chose two matrices for this experiment, each with different characteristics that enable us to
explore how architectural and programming differences affect performance. The first
matrix LSHAPEis from HarwellBoeing collectiorand represents a finite matrix problem.

It is a 1008x1009 matrix with an average of 6.8 nonzeros and a maximum of 7 nonzeros
per row. Our second matrbARGEDISs the same one used in previous IRAM

experiments [9], and contains a pseudodom pattern afiornrzeros using a construction
algorithm from the DIS specification [8], parameterized by the matrix dimension, and the
number of nonzeros. The input matrix size is 10000x10000 with an average of 18 nonzeros
and a maximum of 82 nonzeros per row.

4.1 VIRAM Implementation We consider 3 algorithms for tMV implementation on
VIRAM [9], each reflecting a different optimization strategy for vector architectures.
Compressed Row StoragéRS is the most common sparse matrix format, which stores an
array of olumn indices and nerero values for each ro8PMV is then performed as a
series of sparse dot products. The second approach usdipuk (or Itpack) format [15],
which forces all rows to have the same length by padding them with zeros. It still has
indexed memory operations, but increases available data parallelism through vectorization
across rows. Finally, we experimented with the segmentedSegsy{rmalgorithm,

originally developed for the Cray PVP [4]. The data structure is an augmented ftiven of
CRS format and the computational structure is similar to Ellpack, although there is an
additional control complexity. Since VIRAM can only generate four addresses per cycle,
the large stride memory access is slow, as discusstiion 3.2.1Therebre, we

modified the original code to make it unit stride.

4.2 Imagine Implementation A key component of Imagine’s streaming paradigm is that

the computational clusters can only access data in a sequential fashion from the SRF.

HoweverSPMV requires irreglar data access to properly index the source vector.

Therefore, in all of the ImagirePMV implementations, the data is properly reordered

from mainrmemory into the SRF to avoid the need for any indirect addressing during

computation. Additionally, thendexed source vector stream is expanded to as many

elements as in the sparse matrix, since it is not possible to arbitrarily access the vector data.
Our first Imagine implementation uses the Compressed Row St@&g:format

and performs a series of spardot products. However, since the rows have different



numbers of nonzeros, assigning each cluster to sum a unique row is inefficient since the
lock-step execution of the SIMD architecture would limit performance to the longest
computation. Our algorithrinerefore uses all eight arithmetic clusters to process one row
at a time, using intercluster communication to perform the summation reduction. Note that
in this algorithm, conditional input and output streams are used to selectively fetch the
correct numbr of row elements and properly output the result only when the row
computation is complete. Since the kernel language has extremely restricted conditional
syntax, conditional streaming [13] allows a number of important operations, such as
handling datadependent control constructs, merging or appending streams, and limited
load balancing.

Our next implementation strateggt(eamy leverages the stream concept of
producerconsumer locality. Here, in addition to the matrix and indexed vector, the
computatimal kernel receives a third (sentinel) stream indicating which nonzeros entries
are at the end of a row. Based on this information, the arithmetic clusters selectively sum
two elements if they are determined to be on the same row. The partial sum idigpeat
passed through the computational kernel until the dot product summation is complete. The
third version is an Imagine implementation of the VIRAMpackalgorithm. In this
routine we fill the rows of the sparse matrix such that each has the same ntimire
zeros. Each cluster then performs all of the required multigtis on a given row and
outputs the corresponding entry of the result. This results in a very simple kernel, but its
performance is dependent on the length of the row.

4.3 Performance Results Table 6presents the performance resultSBMV on VIRAM
and Imagine using theSHAPEandLARGEDISmatricesNote that algorithmic peak
performance 0§PMV on VIRAM is 8 operations per cycle (one for each vector lane),
while on Imagine arithmetipeak performance is 32 operations per cycle (2 multiplies and
2 adds for each of 8 clusters). Comparing SPMV performance using the original matrix
patterns CRS, Segsumand Streamsperformance is rather low due to the lack of
parallelism, since the avage rows oESHAPEandLARGEDIScontain only 8 and 18
nonzeros respectively. However, notice that VIRAM achieves a significantly higher
fraction of peak performance than Imagine (8.4% vs. 1.5%ARGEDIS. Imagine’s
SPMV Streamsmplementation sustaéa particularly poor performance of less then 1%
efficiency. We believe that this was partially due to the unpredictable length of the output
streams after each kernel cycle, which caused the stream scheduler to function inefficiently.
Results are even modramatic when comparing tEdpack (filled)
implementations. Here VIRAM attains 31% and 32% of peak respectively compared with
1.2% and 6.3% in the Imagine versions, and requires fewer total cycles. However, Imagine
still achieves higher MFlop/s for aam algorithm comparisons due to its large
computational potential. Note, that since the Ellpack matrices are artificially padded with
zeros to create symmetric row lengths, the fraction of useful operations can be arbitrarily
poor depending on the matskructure. However, this fraction of useful computations
would penalize the effective performance of both architecture equally. These experiments
demonstrate VIRAM’s ability to effectively handle codes with low operations per data
access and validates atonclusions ofection 3.2.1.



5 Complex QR Decomposition

In the QR decomposition, a matixis decomposed #=QR, whereQ is a orthogonal and
Ris a upper triangular matrix. A standard way of performing this decomposition is to use
Householder transfmations: orthogonal transformations that annihilate the lower part of
each column (i.e., the part of the column below its diagonal element) of the Adtrus
producingR. If performed in a columiby-column manner, (computing a Householder
transformaton for each column and updating the subsequent columksising that
transformation) this process is rich in le2eBLAS [18] operations of matrixector
multiplication and outer product updates [10].

5.1 VIRAM and Imagine I mplementations In order toincrease the computation to

memory ratio of the Householder QR, we use block variants of the algorithm, that are rich
in level3 BLAS operations. These block methods consider a block of columns and
factorize them (using the Householder QR) to obtain aempingular (a diagonal block

of R) matrix, as well as the transformation used to decompose this block. The
transformations are stored in a suitable matrix representation and then applied to the
subsequent columns of the matrix, and the computationagew with a new column

block. One representation of the blocked Householder is thellsalcompactWyY
representation [3,24], which involves matrid¢andT, that obey the identitgj=(1-

YTY)R, wherel-YTY'=Q (Y is the conjugate transposeY)f Thereader is referred to

[10] for a complete description of the blocked Householder QR. Both VIRAM and Imagine
implementations use this blocked algorithm, to decompose a matrix A of complex
elements. The use of complex elements enhances the computatiorstyir{tgos/word)

and the locality of the algorithm, since each complex multiplication expands to six
arithmetic operations.

VIRAM implementation is a port of theLAPACK]1] routine CGEQRFand its
associatedLAS[18] routines.In the VIRAM implementation, columns are considered in
blocks of 32 and the whole implementation is composed of cdlsA&routines. The
optimization process was straightforward and involved insertion of vectorization directives
[20] in the source codef BLASroutines. For certaiBLASroutines, loops were
interchanged, converting large stride accesses to smaller ones to avoid the overheads
described irSection 3.2.1For instanceSAXPYversion of matrixvector multiply would do
considerably better #m thedot-productversion [16], for matrices stored in columrajor
order (as iICCLAPACH1]). This is because the latter implementation requires strided
accesses, in addition to the expensive reductions for computing the sum.

The Imagine implementatioredcribed in [19] also uses a blocked algorithm.
Blocks of 8 columns are fed into kernels that compute the R matrix for that block. The
Householder transformation is also computed at this point. This transformation is then
applied to the subsequent columadis of the matrix and the process iterates. Some
complicated indexing of the matrix stream need to be performed as each iteration of the
process requires smaller and smaller matrices.

5.2 Performanceresults The performance of QR on a 18%-96 (m-by-n) complex matrix
A, taken from the Mitre RT_STAP benchmark suite [5], is showreainle 7 Note that this
algorithm requireSmrf operations. VIRAM sustains only 34.1% of its theoretical



hardware peak on this computationally intensive kernel, chieflyalmemory accesses

with large stride, and achieves 546 MFlop/s. Imagine, on the other hand, performs at over
65% efficiency and shows an impressive speed of over 13 GFlop/s f1449]

improvement of almost 24x in raw processing power over VIRAM . Thasdise

demonstrate the considerable performance can be obtained on Imagine on classes of
computations with high operations per memory access, as describsdiom 3.2.2

6 Conclusions and Future Work

In this work we successfully demonstrated the @agebetween emerging higind media
processors and scientific computations. We were able to gain insight into the salient
features of VIRAM and Imagine in the context of numerical kernels, and quantify the
computational space best suited for each procepsiragligm. First, we developed a
scalable synthetic prob8gmat which allowed us to parameterize key features of the
architectures. By varying a small set of parameters we explored performance in the context
of: computational intensity, vector/streamdém memory access patterns, kernel
overheads, produceonsumer locality, and hierarchical memory structure. Two important
scientific kernels each with distinct program behavior were then presented. We showed that
the SPMV kernel, characterized by low ajpéons per data access and irregular memory
access, mapped to the low endsgimat’'sperformance spectrum; Whereas the high end of
Sgmat’'sspectrum was correlated @RD, adense algorithm requiring high computational
intensity.

We also discussed the cplex interactions between programming paradigms,
architectural support at the ISA level and the underlying micoarchitecture of these two
systems. Th&gmatandQRD benchmarks were able to leverage the nwittid record
support of the streaming architectufdthough VIRAM’s compiler was able to vectorize
these multiword codes, it was restricted to using the native vector instructions which only
operate on basidata types. As a result, VIRAM was forced to incur the overhead of
strided memory accesses. Hawe program development was more challenging in
Imagine than in the weknown vectorization paradigm, because the programmer is
exposed to the memory hierarchy and cluster organization of the Imagine architecture.
Improvement in the quality of the congi and software development tools, and
abstracting lower level details of the hardware will be essential in bringing the stream
programming model to the wider scientific community. Brook [7] and Streamlt [25] are
two examples of recently proposed highkel streaming languages that attempt to increase
programmer productivity while achieving high performance.

Future plans include validating our results on real hardware as it becomes
available, as well as examining a broader scope of scientific codedadi® gvaluate
more complex datparallel systems such as the Streaming Supercomputer [7] and the Diva
[11]. Our longterm goal is to evaluate these technologies as building blocks for future
high-performance multiprocessor systems.

® As of this time we have been unable to reproduce these ré¥eltare currently working with the Stanford team to
resolve any inconsistencies.
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| magi ne | magi ne
Menor y SRF
Bandwi dt h GB/ sec 6.4 2.7 32
Peak Fl ops G-l op/s 20
(32 bit)
Peak Fl op/ Vrd 1 30 2.5
Cl ock Speed MHz 200 500

Chip Area 15x18mm (270 mm?) | 12x12mm (144 mm?

Dat a w dt hs ]
32/16/8 bit

support ed

Transistors 130 Million 21 Million

Power consunption 2 Watts 4 Watts

Table 1:Highlights of VIRAM and Imagine architecture
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Figure 1: Block diagram of the VIRAM arbitecture
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Figure 2: Overview of the Imagine architecture



N 1 2 3 4 5

VIRAM 19.0% 25.3%

IMAGINE 0.7% 2.3%

Table 2: Percentage of algorithmic peak performae of VIRAM and Imagine with M =1 and L =16

60% -
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40% -
30% —— VIRAM

0% | IMAGINE

10% -
0% +—0== T T T T T T J
8 16 32 64 128 256 512 1024

Vector/Stream Length (L)

Figure 3: Percentage of algorithmic peak performance of VIRAM and Imagine for varying
vector/stream lengths when N =3 and M =1

Address

. No Yes Yes Yes
Generation

Cycles 118 | 173 | 186 | 298

Table 3: Number of VIRAM cycles using various stride patterns, with and without address generation,
for N =1, M =1, and L =256

M VIRAM IMAGINE
1 39% 7%

10 82% 38%

20 89% 49%

Table 4: Percentage of algorithmic peak performance of VIRAM and Imagine for N =3, M =1,10,20
and L =1024
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Figure 4. Percentage of algorithmic peak performance of ImaginethvN =3 and K=1,5,10 using long
streams and varying computational intensity

Imagine (N=5)

Ops/Word

50 90 120 150

82% 88% 89% 91%

100 200 300 400

% Peak 86% 89% 90% 91%

Table5: Achieving high efficiency for VIRAMand Imagine using long streams and high computational

intensity
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Figure5: Performance crossover between VIRAM and Imagine for N =3 and M =10



Mat ri x
ROWS CRS El | pack | CRS El | pack
(Nonzer 0s)

% of Peak 2.8% |7.4% |31% 1.1% |0.8% 1.2%
L SHAPE
1008 Total cycle | 66823 | 23802 | 5666 40300 | 48190 37930
(6958) MFl op/ s 44 118 496 170 142 186

% of Peak 3.2% |8.4% |32.0% |1.5% |0.6% 6. 3%
LARGEDI S
10000 802070 641512 | 742310 753540
(177820) MFl op/ s 91 135 511 240 97 1088

Table 6: Performance of SPMV on VIRAM and Imagine for the LSHAPE and LARGEDIS matrices
using various algorithms

Mat ri x Per f or mance

M TRE % of Peak 34. 1% 65. 5%

RT_STAP Tot al

192- by- 96 5188817 712770
Cycl es

conpl ex

mat ri x VFl op/ s 546 13, 100

Table 7: Performance of QRD on VIRAM and Imagine for the 198y-96 MITRE RT_STAP matrix




